运动的描述

博客分类: knowledge

运动的描述

运动的描述

坐标系

直角坐标系

\[\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}\] \[\boldsymbol{v} =\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} t}=\dot{x} \boldsymbol{i}+ \dot{y} \boldsymbol{j}+\dot{z} \boldsymbol{k} =v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}+v_{z} \boldsymbol{k}\] \[\boldsymbol{a}=\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{d} t}=\ddot{x} \boldsymbol{i}+\ddot{y} \boldsymbol{j}+\ddot{z} \boldsymbol{k}=a_{x} \boldsymbol{i}+a_{y} \boldsymbol{j}+a_{z} \boldsymbol{k}\]

平面极坐标系

\[\frac{\mathrm{d} \boldsymbol{i}}{\mathrm{d} t}=\frac{\mathrm{d} i}{\mathrm{~d} \theta} \frac{\mathrm{d} \theta}{\mathrm{d} t}=\dot{\theta} \boldsymbol{j}\] \[\frac{\mathrm{d} \boldsymbol{j}}{\mathrm{d} t}=\frac{\mathrm{d} \boldsymbol{j}}{\mathrm{d} \theta} \frac{\mathrm{d} \theta}{\mathrm{d} t}=-\dot{\theta} \boldsymbol{i}\] \[\boldsymbol{v}=\dot{r} \boldsymbol{i}+r \dot{\boldsymbol{\theta}} \boldsymbol{j}\] \[\boldsymbol{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \boldsymbol{i}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \boldsymbol{j}=\left(\ddot{r}-r \dot{\theta}^{2}\right) i+\frac{1}{r} \frac{\mathrm{d}}{\mathrm{d} t}\left(r^{2} \dot{\theta}\right) \boldsymbol{j}\]

径向与切向加速度

\[\boldsymbol{v}=v \boldsymbol{i}=\frac{\mathrm{d} s}{\mathrm{~d} t} \boldsymbol{i}\] \[a=\frac{\mathrm{d} v}{\mathrm{~d} t} i+\frac{v^{2}}{\rho} j\] \[\rho = \frac{\mathrm{d} s}{\mathrm{~d} \theta}\]

任意曲线坐标系

\[\boldsymbol{e}_{i}=\frac{1}{H_{i}} \frac{\partial \boldsymbol{r}}{\partial q_{i}}, \quad \frac{\partial \boldsymbol{r}}{\partial q_{i}}=\frac{\partial x}{\partial q_{i}} \boldsymbol{i}+\frac{\partial y}{\partial q_{i}} \boldsymbol{j}+\frac{\partial z}{\partial q_{i}} \boldsymbol{k}\] \[H_{i}=\left|\frac{\partial \boldsymbol{r}}{\partial q_{i}}\right|=\sqrt{\left(\frac{\partial x}{\partial q_{i}}\right)^{2}+\left(\frac{\partial y}{\partial q_{i}}\right)^{2}+\left(\frac{\partial z}{\partial q_{i}}\right)^{2}}\]

H为拉梅系数

\[\boldsymbol{v}=\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} t}=\frac{\partial \boldsymbol{r}}{\partial q_{1}} \dot{q}_{1}+\frac{\partial \boldsymbol{r}}{\partial q_{2}} \dot{q}_{2}+\frac{\partial \boldsymbol{r}}{\partial q_{3}} \dot{q}_{3}=v_{q_{1}} \boldsymbol{e}_{1}+v_{q_{2}} \boldsymbol{e}_{2}+v_{q_{3}} \boldsymbol{e}_{3}\] \[v_{q_{i}}=H_{i} \dot{q}_{i}\] \[a_{q_{i}}=\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{d} t} \cdot \boldsymbol{e}_{i}=\frac{1}{H_{i}}\left(\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{d} t} \cdot \frac{\partial \boldsymbol{r}}{\partial q_{i}}\right)=\frac{1}{H_{i}} \left[\frac{\mathrm{d}}{\mathrm{d} t}\left(\boldsymbol{v} \cdot \frac{\partial \boldsymbol{r}}{\partial q_{i}}\right)- \boldsymbol{v} \cdot \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\partial \boldsymbol{r}}{\partial q_{i}}\right)\right]\]

\[\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial \boldsymbol{r}}{\partial q_{i}}\right)=\frac{\partial^{2} \boldsymbol{r}}{\partial q_{i} \partial q_{1}} \dot{q}_{1}+\frac{\partial^{2} \boldsymbol{r}}{\partial q_{i} \partial q_{2}} \dot{q}_{2}+\frac{\partial^{2} \boldsymbol{r}}{\partial q_{i} \partial q_{3}} \dot{q}_{3}\] \[\frac{\partial \boldsymbol{v}}{\partial q_{i}}=\frac{\partial^{2} \boldsymbol{r}}{\partial q_{1} \partial q_{i}} \dot{q}_{1}+\frac{\partial^{2} \boldsymbol{r}}{\partial q_{2} \partial q_{i}} \dot{q}_{2}+\frac{\partial^{2} \boldsymbol{r}}{\partial q_{3} \partial q_{i}} \dot{q}_{3}\]

\[\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial \boldsymbol{r}}{\partial q_{i}}\right)=\frac{\partial \boldsymbol{v}}{\partial q_{i}}\] \[\frac{\partial \boldsymbol{r}}{\partial q_{i}}=\frac{\partial \boldsymbol{v}}{\partial \dot{q}_{i}}\] \[a_{q_{i}}=\frac{1}{H_{i}}\left[\frac{\mathrm{d}}{\mathrm{d} t}\left(\boldsymbol{v} \cdot \frac{\partial \boldsymbol{v}}{\partial \dot{q}_{i}}\right)-\boldsymbol{v} \cdot \frac{\partial \boldsymbol{v}}{\partial q_{i}}\right]\]

设$T=v^{2} / 2$为动能,则

\(a_{q_{i}}=\frac{1}{H_{i}}\left(\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial T}{\partial \dot{q}_{i}}-\frac{\partial T}{\partial q_{i}}\right)\)

参考系

平动参考系

绝对速度, 相对速度与牵连速度

有两个参考系 , 前者是静止不动的, 后者相对于前者作直线运动。

\[\boldsymbol{v}=\boldsymbol{v}_{0}+\boldsymbol{v}^{\prime}\]

绝对加速度,相对加速度与牵连加速度

\[a=a_{0}+a^{\prime}\]

惯性平动系:$a_0=0$; 非惯性平动系$a_0\ne 0$

运动方程

\[m \ddot{\boldsymbol{r}}=\boldsymbol{F}(\boldsymbol{r}, \dot{\boldsymbol{r}}, t)\]

直角坐标系

\[m \ddot{x}=F_{x}(x, y, z ; \dot{x}, \dot{y}, \dot{z} ; t)\] \[m \ddot{y}=F_{y}(x, y, z ; \dot{x}, \dot{y}, \dot{z} ; t)\] \[m \ddot{z}=F_{z}(x, y, z ; \dot{x}, \dot{y}, \dot{z} ; t)\]

平面极坐标系

\[m\left(\ddot{r}-\dot{\theta}^{2}\right)=F_{r}(r, \theta ; \dot{r}, \dot{\theta} ; t)\] \[m(r \ddot{\theta}+2 \dot{r} \quad \dot{\theta})=F_{\theta}(r, \theta ; \dot{r}, \dot{\theta} ; t)\]

约束与自然坐标系

  • 解非自由质点的运动(或称约束运动)问题,一般都是将约束去掉,而代之>以约束反作用力,从而把它当成自由质点
  • 约束反作用力,一般都是未知的,与作用在质点上的其它力及质点本身运动状态等有关;
  • 约束反作用力本身,并不能引起质点的任何运动
  • 约束反作用力通常作用在质点和曲线或曲面的接触点上。在无摩擦的情况下,它沿着曲线或曲面的法线,而在有摩擦的情况下,则和法线成一定角度的倾角

令$R$表约束反力,则

\[m \ddot{\boldsymbol{r}}=\boldsymbol{F}(\boldsymbol{r}, \dot{\boldsymbol{r}}, t)+\boldsymbol{R}\] \[m \frac{\mathrm{d} v}{\mathrm{~d} t}=F_{t}+\mu\sqrt{R_n^2+R_b^2}\] \[m \frac{v^{2}}{\rho}=F_{n}+R_{n}\] \[0=F_{\mathrm{b}}+R_{\mathrm{b}}\]

约束用关系式 $f\left(\boldsymbol{r}{\nu}, \boldsymbol{v}{\nu}, t\right)$ 给出

  • 几何约束 约束方程不含点的速度分量 $f\left(\boldsymbol{r}_{\nu}, t\right)=0$
  • 微分约束 含速度分量
  • **

解题步骤

  1. 理解题意
  2. 作草图
  3. 适当选取坐标系并规定质点的坐标
  4. 标出已知及未知的力和加速度
  5. 写出微分方程
  6. 解方程
  7. 讨论

有心力

\[\boldsymbol{F}=\boldsymbol{F}(r) \frac{\boldsymbol{r}}{r}\]

直角坐标系

\[m \ddot{x}=F(r) \frac{x}{r}\] \[m \ddot{y}=F(r) \frac{y}{r}\]

极坐标系

\[m\left(\ddot{r}-r \dot{\theta}^{2}\right)=F(r)\] \[r^{2} \dot{\theta}=h\]

比耐公式

\[h^{2} u^{2}\left(\frac{\mathrm{d}^{2} u}{\mathrm{~d} \theta^{2}}+u\right)=-\frac{F}{m}\] \[u = \frac1r\]